Chapter I

USsING GENERATIVE
REPRESENTATIONS TO EVOLVE
ROBOTS

Gregory S. Hornby L1

Recent research has demonstrated the ability of evolutionary algorithms to auto-
matically design both the physical structure and software controller of real physical
robots. One of the challenges for these automated design systems is to improve
their ability to scale to the high complexities found in real-world problems. Here
we claim that for automated design systems to scale in complexity they must use
a representation which allows for the hierarchical creation and reuse of modules,
which we call a generative representation. Not only is the ability to reuse modules
necessary for functional scalability, but it is also valuable for improving efficiency in
testing and construction. We then describe an evolutionary design system with a
generative representation capable of hierarchical modularity and demonstrate it for
the design of locomoting robots in simulation. Finally, results from our experiments
show that evolution with our generative representation produces better robots than
those evolved with a non-generative representation.

I.1 INTRODUCTION

Computer-automated design systems using evolutionary algorithms have been used
to evolve a variety of static objects — such as antennas [11], load cells [16], trusses
[14] and more [1, 2] — software controllers for robots [15, 20, 3, 6], and both the
controller and structure of robots [17, 21, 10, 12]. For the most part the designs
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that have been produced are fairly simple, which has led to a concern with how
well this method will scale to the high complexities necessary for real-world robot
designs. In engineering and software development, complex artifacts are achieved
by exploiting the principles of regularity, modularity, hierarchy and reuse [19] [8]
[13]. These features can be summarized as the hierarchical reuse of building blocks.

Here we claim that for automatic design systems to scale in complexity the
designs they produce must be made of reused modules. While the evolutionary
algorithm can affect the degree of reuse in an evolved design, the ability to create
structures which reuse subassemblies is limited by the ability of the representation
to encode them. We define generative representations as the class of representations
which allow building-blocks encoded in the genotype of a design to be reused in the
actual design.

An evolutionary design system using a generative representation would start with
a library of basic parts and would iteratively create new, more powerful modules from
ones already in its library. This principle of modularity is well accepted as a general
characteristic of good design since it typically promotes decoupling and reduces
complexity [18]. Another advantage of reusing modules throughout a design is that
a design built with a library of standard modules requires less time to verify and
test because it consists of fewer unique components. Also, fewer unique components
and reduced complexity should simplify manufacturing, and also leads to a smaller
stockpile of spare parts necessary for maintenance and repair.

Generative representations improve the scalability of evolutionary design sys-
tems because the hierarchical reuse of modules captures some types of design de-
pendencies and increases the ability of the search engine to navigate large design
spaces. The reuse of elements in a design allows a generative representation to
capture design dependencies by giving it the ability to make coordinated changes
in several parts of a design simultaneously. For example, if all the legs of a robot
reuse the same component, then changing the length of that component will change
the length of all legs simultaneously. Navigation of large design spaces is improved
through the ability to manipulate assemblies of components as units. For example,
if adding/removing an assembly of m parts would make a design better, this would
require the manipulation of m elements of a design encoded with a non-generative
representation. With a generative representation the ability to add/remove copies of
a previously created module allows for selecting these m parts in a more meaningful
way than choosing them at random.

Having presented an argument for the use of generative representations, the
rest of this chapter gives a detailed description of our evolutionary design system
for creating robots and gives a comparison between evolution with a generative
representation and a non-generative representation.

1.2 GENERATIVE REPRESENTATIONS

Generative representations are any type of representation that allows for the creation
and reuse of organizational units in a design. Within this definition there are many
different methods by which reuse can be achieved. The generative representation
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used here is a kind of computer language within which design-construction programs
are written. This language consists of a framework for designing construction rules
and a set of these rules defines a program for a design. Designs are created by
compiling a design program into an assembly procedure of construction commands
and then executing this assembly procedure in the module which constructs designs.
Since it is a general framework for encoding designs the person using this framework
must supply the set of design-construction commands and a design constructor.

A design encoded with our generative representation consists of a set of rules
for constructing a design and an initial command to start the execution of this set
of rules. Each rule consists of a rule head followed by a number of condition-body
pairs. For example in the following rule,

A(n0,nl) :nl >5— B(nl+1)eD(n1+0.5,n0—2)

the rule head is A(n0, nl), the condition is n1 > 5 and the body is B(nl+1) ¢
D(n14-0.5, n0-2). The following is an example of a complete encoding of a design:

P0O(n0): n0>1.0—[ P1(n0x*1.5) ] a(1) b(3) ¢(1) PO(n0 — 1)
P1(n0): n0>1.0—={[b(n0)]d(1) }(4)

This example contains the starting command, P0(4) and two rules, PO and P1,
both of which take a single argument and have a single condition-successor pair.
To produce an actual design from its encoding, the set of rules is first compiled
into an assembly procedure. This assembly procedure is an intermediate stage be-
tween encoded design, the genotype, and actual design, the phenotype. An assembly
procedure is produced by taking the starting command from the design’s genotype
and then iteratively rewriting rule heads with the appropriate successor. In addition
to rewriting, this representation has a looping feature which replicates symbols that
are enclosed within parentheses. The expression { block }(n) repeats the enclosed
block of symbols n times and {abc}(3) compiles to, abcabcabe. The above program
is compiled as follows:
PO(4)
[ P1(6) ] a(1) b(3) c(1) PO(3)
[{[b(6) ]d(1) }(4) ] a(1) b(3) ¢(1) [ P1(4.5) ] a(1) b(3) ¢(1) PO(2)
[{[0(6)]d(1)}(4)]a(1) b(3) c(1) [{ [b(4.5) ] d(1) }(4) ] a(1) b(3)
(1) [ P1(3) ] a(1) b(3) ¢(1) PO(1)
5. [{[b(6)]d(1)}(4)]a(1)b(3) c(1) [{[b(4.5)]d(1)}(4)]a(1)b(3)
o) [{[b(3)]d(1) }(4) ] a(1) b(3) ¢(1)
6. [[b(6)]d(1)[b(6)]d(1)][b(6)]d(1)][b(6)]d(1)]a(l)b(3)c(1)]
[b(4.5) ] d(1) [b(4.5) ] d(1) [ b(4.5) ] d(1) [b(4.5) ] d(1) ] a(1) b(3)
c(1) [[b(3) ] d(1) [b(3) ] d(1) [b(3) ] d(1) [b(3) ] d(1) ] a(1) b(3)
c(1) b(3)
A program for encoding a design can be shown graphically by representing the
different parts and symbols of a program with different shapes and colors. The
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Figure I.1. Graphical version of the generative representation, (a); along with the
sequence of strings produced, (b).
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images in figure 1.1 show a larger set of rules for a design, figure I.1.a, as well as
the sequence of assembly procedures that are generated in the compilation process,
figure I.1.b. In these images rule-head symbols are represented by cubes with lines
connecting them to their condition-body pairs, grey spheres represent the condition
and the symbols following it are the body. The sequence is started with the first
cube (here a blue and yellow one) and the sequence of symbols below it are the
assembly procedures generated after each iteration of parallel replacement.

1.3 ENcODING ROBOTS WITH A GENERATIVE REPRESENTATION

To create designs with the generative representation of the previous section, the non-
rule-head symbols are interpreted as construction commands in a design construction
language. The class of robots which we evolve consist of Tinker-Toy?™-like rods of
regular length and both fixed and actuated joints. Since these robots are evolved
using a generative representation we call them genobots, for generatively encoded
robots. For these robots there are two types of controllers which are used to drive
them: simple oscillators, and neural-networks.

1.3.1 Oscillator Controlled Genobots

The command set for constructing oscillator-controlled genobots consists of opera-
tors for attaching fixed rods and actuated rods as well as operators for controlling
the oscillation of the actuated rods. To know where to add the next part the robot-
construction module maintains the current construction state, which consists of
the current position and orientation on the robot body and also the relative phase
offset for oscillators. The commands turn-left/right/up/down/clockwise/counter-
clockwise(n) rotate the current heading about the appropriate axis in units of 90°.
Rods are added to the robot with the command forward, which adds a rod in the
forward direction if none exists or moves the current position to the end of the rod
if one does exist. The command back moves the current position back to the other
end of the current rod. Actuated rods are added with a set of commands which
specify the joint type to use and its oscillation rate. Revolute-1(n) creates a joint
which oscillates from 0° to 90° about the Z-axis with speed n, revolute-2(n) creates
a joint which oscillates from —45° to 45° about the Z-axis with speed n, twist-90(n)
creates a joint which oscillates from 0° to 90° about the X-axis with speed n, and
twist-180(n) creates a joint which oscillates from —90° to 90° about the X-axis with
speed n. These actuated-rod commands specify the rate of oscillation, to control the
relative phase of the oscillating joints the construction state maintains an offset value
that is assigned to newly created actuated joints. This phase-offset value is changed
with the commands increase-offset(n) and decrease-offset(n), which adjust
the phase-offset value in increments of 25%. To allow for a kind of branching in
executing robot-construction assembly procedures there are commands, [ and ], for
pushing and popping the construction state to/from a stack.

Figure 1.2 contains images of intermediate steps in building a genobot, as well
as part of its animation, from the following command sequence,
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(a) (b)
(c) ()

Figure I.2. Building and simulating a three-dimensional robot.
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[left(1) forward | [ right(1) forward | revolute-1(1) forward
The single bar in figure I.2.a is built from the string, [ left(1) forward ], and the two
bar structure in figure 1.2.b is built from, [ left(1) forward ] [ right(1) forward ]. The
final robot is made from the command sequence, [ left(1) forward | [ right(1) forward
] revolute-1(1) forward, and is shown in figure I.2.c, where it is displayed part-way
through its movement cycle. Figure 1.2.d displays the robot with the actuated joint
moved half-way through its joint range.

1.3.2 Neural Networks

The method for constructing the neural-network controllers starts with a single node
and edge and adds new nodes/edges through the execution of network-construction
commands. Commands for constructing the network operate on links between neu-
rons and use the most recently created link as the current one. Push and pop oper-
ators, ‘[" and ‘", are used to store and retrieve the current link — consisting of the
from-neuron, the to-neuron and index of the link into the to-neuron (for when there
are multiple links between neurons) — to and from the stack. This stack of edges
allows a form of branching to occur in an encoding — an edge can be pushed onto
the stack followed by a sequence of commands and then a pop command makes the
original edge the current edge again. For the following list of commands the current
link connects from neuron A to neuron B.

e decrease-weight(n) — Subtracts n from the weight of the current link. If the
current link is a virtual link, it creates it with weight —n.

e duplicate(n) — Creates a new link from neuron A to neuron B with weight n.

e increase-weight(n) — Add n to the weight of the current link. If the current
link is a virtual link, it creates it with weight n.

e loop(n) — Creates a new link from neuron B to itself with weight n.

e merge(n) — Merges neuron A into neuron B by copying all inputs of A as
inputs to B and replacing all occurrences of neuron A as an input with neuron
B. The current link then becomes the nth input into neuron B.

e next(n) — Changes the from-neuron in the current link to its nth sibling.

e output(n) — Creates an output-neuron, with a linear transfer function, from
the current from-neuron with weight n. The current-link continues to be from
neuron A to neuron B.

e parent(n) — Changes the from-neuron in the current link to the nth input-
neuron of the current from-neuron. Often there will not be an actual link
between the new from-neuron and to-neuron, in which case a virtual link of
weight 0 is used.

e reverse — Deletes the current link and replaces it with a link from B to A with
the same weight as the original.
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e set-function(n) — Changes the transfer function of the to-neuron in the current
link, B, with: 0, for sigmoid; 1, linear; and 2, for oscillator.

e split(n) — Creates a new neuron, C, with a sigmoid transfer function, and
moves the current link from A to C and creates a new link connecting from
neuron C to neuron B with weight n.

Neurons in the network are initialized to an output value of 0.0 and are updated
sequentially by applying a transfer function to the weighted sum of their inputs with
their outputs clipped to the range £1. The different transfer functions are: sigmoid,
using tanh(sum of inputs); linear; and an oscillator. Oscillator units maintain a
state which is increased by 0.01 after each update. The output of an oscillator unit
is mapped to the range -1 to 1 by applying a triangle wave function, with a period of
four, to the sum of its inputs and its state. The initial activation value for neurons
with the sigmoid and linear transfer functions is 0.0 and the initial activation value
for oscillator units is 1.0.

1.3.3 Neural-Network Controlled Genobots

A genobot’s morphology and neural controller are constructed by combining the
command sets for constructing body and brain into one language and then building
body and brain simultaneously. Since actuated joints are controlled by the neu-
ral network the commands for modifying the phase offset, increase-offset(n)
and decrease-offset(n), are not included. The resulting design language consists
of the commands: [, ], (, ), forward, back, revolute-1, revolute-2, twist-90,
twist-180, left (n), right (n),up(n), down(n), clockwise(n), counter-clockwise(n),
decrease-weight(n), duplicate(n), increase-weight(n), loop(n), merge(n),
next(n), parent(n), reverse, set-function(n), and split(n). This language
has two push/pop commands with two stacks: ( ), for pushing/popping the link-
state to the link stack; and [ |, for pushing/popping both the morphology and link
states to a stack. A robot’s body and brain are joined together by attaching the
current input-neuron to the newly created actuated joint each time a joint com-
mand — revolute-1, revolute-2, twist-90, or twist-180 — is executed. By defining
joint-creation commands in a way that affects both controller and morphology a
connection between body and brain is induced.
An example of an assembly procedure using this language is,

[ right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) forward ]
duplicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25) split(0.4) reverse
revolute-1(1.0) left(1.0) right(1.0) forward right(1.0) forward right(1.0) forward
right(1.0) forward

Figure 1.3 contains a sequence of images showing intermediate stages in the
construction of this assembly procedure. Before any commands are processed a
robot consists of a single oscillating neuron and a point, figure 1.3.a. After executing
the commands, [ right(1.0) forward right(1.0) forward right(1.0) forward right(1.0)
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a b.

Figure 1.3. Constructing a neural-network controlled genobot
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forward ], the robot consists of a square of four rods and the oscillating neuron,
figure 1.3.b. After executing, duplicate(0.25) split(0.4) reverse revolute-1(1.0), a
second neuron is created and it is attached to the actuated joint at the end of the
newly created rod, figure 1.3.c. The commands, duplicate(0.25) split(0.4) reverse
revolute-1(1.0), are repeated and a third neuron is created and it is attached to
another actuated joint, figure 1.3.d. The last commands, left(1.0) right(1.0) forward
right(1.0) forward right(1.0) forward right(1.0) forward, attach another square onto
the end of the last revolute-1 joint, figure 1.3.e. Figure 1.3.f shows the genobot with
the joints halfway through their movement range.

1.3.4 Generative Representation Example for Neural-Network
Controlled Genobots

Having presented construction languages for oscillator-controlled robots, neural net-
works and neural-network controlled robots we now give an example going from
genotype to phenotype of a neural-network controlled robot. The encoding for this
genobot consists of the starting command P0(4), two production rules, each with
two condition-successor pairs, and uses the command set for constructing neural-
network controlled genobots:

PO(n0): 10> 3.0 > P1(5.0) PO(n0 — 2.0) left(1.0) P1(4.0)
n0 > 0.0 = { duplicate(0.25) split(0.4) reverse
revolute-1(1.0) }(2.0)

P1(n0): n0>4.0— [ P1(4.0) ]
n0 > 0.0 » { right(1.0) forward }(n0)

To produce the assembly procedure for constructing the genobot the rule-system is
compiled starting with the command P0(4):

1. PO(})

2. P1(5.0) P0(2.0) left(1.0) P1(4.0)

3. [ P1(4.0) ] { duplicate(0.25) split(0.4) reverse revolute-1(1.0) }(2.0)
left(1.0) { right(1.0) forward }(4.0)

4. [ { right(1.0) forward }(4.0) ] { duplicate(0.25) split(0.4) reverse
revolute-1(1.0) }(2.0) left(1.0) { right(1.0) forward }(4.0)

5. [right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) for-
ward | duplicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25)
split(0.4) reverse revolute-1(1.0) left(1.0) right(1.0) forward right(1.0)
forward right(1.0) forward right(1.0) forward

This last sequence of commands is the assembly procedure from the example in
section 1.3.3 and produces the genobot in figure 1.3.1f.
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I.4 ROBOT SIMULATOR

Once an assembly procedure for constructing a robot has been executed and the
resulting robot is constructed, its behavior is evaluated in a quasi-static, kinematics
simulator. The kinematics are simulated by computing successive frames of moving
joints in small angular increments of 0.001 radians toward the desired angle. This
angle is determined by either an oscillator or a neuron. Oscillators cycle between -1
and 1 and this is scaled to the joint’s range of motion. Similarly, the output value of
a neuron falls within the range of -1 and 1 and this is scaled to the joint’s range of
motion. After each update the structure is then settled by determining whether or
not the robot’s center of mass falls outside its footprint and then repeatedly rotating
the entire structure about the edge of the footprint nearest the center of mass until
it is stable.

To achieve robot designs that are robust to transferal to the real world, noise is
added to evolved structures similar to the method of [9] and [7]. A robot design is
evaluated by simulating it three times, once without noise and twice with different
amounts of construction noise applied to joint angles. Noise is applied to all con-
nections that are not part of a cycle and is a random rotation in the range of £+0.1
radians about each of the three coordinate axis. The returned fitness of an evolved
individual is the worst fitness score from the three trials. By adding construction
noise to a robot and evaluating it multiple times with different random noise each
time, evolved robots are made robust to imperfections in real-world construction.

1.5 EVOLUTIONARY DESIGN SYSTEM

To demonstrate the advantages of generative representations we use GENRE, an
evolutionary design system for creating designs [4]. GENRE counsists of several
design constructors and fitness functions, the compiler for the generative represen-
tation and an evolutionary algorithm (EA) for searching the design spaces. The
EA is the module that drives GENRE and it operates by processing a population of
designs (members of which are called individuals) encoded with the generative repre-
sentation. Search is started by creating an initial random population of individuals
and evaluating each of these with a user-defined fitness function, a mathematical
expression for scoring the goodness of a design. The EA then creates successive
new populations by selecting the better individuals of the current population and
applying small amounts of variation to their encoding to produce new individuals
in a new population.

The two variation operators that are used to produce new individuals are muta-
tion and recombination. Mutation creates a new individual by copying the parent
individual and making a small change to it, such as by replacing one command with
another, perturbing the parameter in a command by adding/subtracting a small
value to it, or adding/deleting a sequence of commands in a rule body. Recombi-
nation takes two individuals as parents and creates a new individual by making a
copy of the first parent and then either exchanging a rule with the second parent,
or randomly replacing a sequence of commands in one body with a sequence from
the second parent.
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Designs can be encoded with either the generative representation described in
section 1.2 or a non-generative representation. For designs encoded with the gen-
erative representation the design program is first compiled into a sequence of con-
struction commands called an assembly procedure. This assembly procedure is then
executed by the design constructor to produce the encoded design. For the non-
generative representation each individual in the population is an assembly procedure
which specifies how to construct the design. We implement this assembly procedure
as a degenerate version of the generative representation which has only a single rule
in which the condition always succeeds and the body consists only of construction
commands. Implementing the non-generative representation in the same way as
the generative representation allows us to use the same evolutionary algorithm and
the same variation operators; the only difference between the two representations is
the ability to hierarchically reuse elements of encoded designs. Once a design has
been constructed, using either the generative or non-generative representation, it is
evaluated for how good it is with the user-defined fitness function.

1.6 EvoLUTION OF OSCILLATOR CONTROLLED ROBOTS

To demonstrate the advantages of generative representations for robot design we first
compare the generative representation of section 1.2 against the non-generative rep-
resentation described in section 1.5 for the evolution of oscillator controlled robots.
For this comparison the non-generative representation is implemented as a degener-
ate type of generative representation with one production rule, no arguments, one
condition-successor pair whose condition always succeeds, and without the repeat
operator or the ability to call production rules. The maximum length of the pro-
duction body is set to ten thousand symbols, allowing assembly procedures of up
to ten thousand operators to be evolved. The generative representation has fifteen
production rules, three condition-successor pairs, and two parameters for each pro-
duction rule. For the generative representation, the maximum length of production
body is set to fifteen commands and the maximum allowed length of a compiled
assembly procedure is set to ten thousand operators — the same length as with the
non-generative representation. The evolutionary algorithm used a population of one
hundred individuals and was run for five hundred generations and results are the
average over ten trials.

The design problem for this comparison is to produce robots that move across
the ground as fast as possible with fitness being a function of the distance moved
by the robot’s center of mass. In order to discourage sliding, fitness was reduced by
the distance that points of the robot’s body were dragged along the ground. Since
the kinematics simulator detects collisions but cannot handle them like a physical
dynamics simulator would, robots that have collisions between body parts are given
a fitness of zero. Finally, a robot was given zero fitness if it had a sequence of four or
more rods in which none of the rods was part of a closed loop with other rods. This
constraint was intended to keep the system from producing spindly robots which
would not function well in reality. The graph in figure .4 plots the fitness of the best
individual in the population, averaged over ten trials, for both the non-generative
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I.6. EVOLUTION OF OSCILLATOR CONTROLLED ROBOTS
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Figure I.4. Performance comparison between the non-generative and generative
representations on evolving robots with oscillator networks for controllers.
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and generative representations. This graph shows that far better robots are evolved
with the generative representation (with an average best fitness of just over fifteen
hundred) than with the non-generative representation (with an average best fitness
of approximately five hundred).

(a) (b)

Figure 1.5. The two best oscillator controlled robots evolved using the non-
generative representation.

Robots evolved with the non-generative representation tended to have few parts,
moved awkwardly and had little regularity in their structure. The two main forms
of locomotion found were using one or more appendages to push along or having two
main body parts connected by a sequence of rods that twisted in such a way that first
one half of the robot would rotate forward, then the other. The two fastest robots
evolved with the non-generative representation are shown in figure I.5.a (fitness 1188
with 49 rods and moves by twisting) and figure 1.5.b (fitness 1000 with 31 rods which
moves by pushing).

Genobots evolved with the generative representation not only had higher aver-
age fitness, but tended to move in a more continuous manner. As with evolution
using the non-generative representation, the genobots created at the beginning of
an evolutionary run had a few rods and joints that would slowly slide on the ground.
In most evolutionary runs, faster genobots were evolved by repeating rolling seg-
ments to smoothen out gaits or by increasing the size of segments/appendages to
increase the distance moved in each oscillation period. Of these, the two fastest are
the genobot in figure 1.6.a, whose segments are shaped like a coil and it moves by
rolling sideways with fitness of 3604 and 325 rods, and the genobot in figure 1.6.b,
a sequence of interlocking X’s that rolls along with fitness 2754 and 268 rods. An
example of the movement cycle of a genobot produced with the generative repre-
sentation is in figure L.7.

While additional runs with the non-generative representation failed to produce
designs more interesting than those in figure 1.5, additional runs with the generative

14
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ROBOTS

(a) (b)

Figure I.6. The two best oscillator controlled genobots evolved using the generative
representation.

representation produced a variety of genobots with different styles of locomotion.
The most common form of movement for evolved oscillator-controlled genobots was
to roll along sideways, as done by the chains in I.8.a and 1.8.b. The genobot in 1.8.c
moves like an undulating sea-serpent. One of the larger genobots that evolved is
the one in figure I.8.d which uses four legs in an awkward walk.

1.7 EvoLuTIiON OF NEURAL-NETWORK CONTROLLED ROBOTS

Next we compare the generative representation against the non-generative repre-
sentation on evolving neural-network controlled robots. The same fitness function,
a measure of distance travelled, is used as with the experiments for oscillator-
controlled robots and both the generative and non-generative representation are
configured in the same way. The results for this comparison are shown in figure 1.9,
which contains a graph of the fitness (averaged over ten trials) of the best individuals
evolved with the non-generative representation and the generative representation.
After ten generations the generative representation achieved a higher average fitness
than runs with the non-generative representation did after 250 generations and the
final genobots evolved with the generative representation were on average more than
ten times faster than robots evolved with the non-generative representation.

Figure 1.10 shows the two best individuals evolved with the non-generative rep-
resentation and figure I.11 shows the two best genobots evolved with the generative
representation. From the images it can be seen that the robots evolved with the
non-generative representation are irregular and have few components, whereas the
genobots evolved with the generative representation are more regular and, in some
cases, have two or more levels of reused assemblies of components.

As with the oscillator-controlled robots, further runs with the generative repre-
sentation produced robots with different styles of locomotion but failed to produce
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(a) (b)
(c) ()

Figure 1.7. Part of the locomotion cycle of an oscillator-controlled genobot.
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ROBOTS

(a) (b)
(c) ()

Figure I.8. A variety of evolved 3D oscillator robots.
These consist of: a, a sequence of rolling rectangles with 169 bars; b, an asymmetric
rolling genobot with 306 bars; ¢, an undulating serpent with 339 bars; d, a four-
legged walking genobot with 629 bars.
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Figure 1.9. Performance comparison between the non-generative representation
and the generative representation on evolving robots with neural networks for con-
trollers.

new varieties of robots with the non-generative representation. The images in fig-
ure 1.12 are examples of other neural-network controlled robots evolved with the
generative representation. The genobot in figure 1.12.a is comprised almost entirely
of actuated joints and moves by alternating between pulling all its limbs in tight to
its body and extending them while twisting its torso. In another evolutionary run
a wheel-like genobot was evolved that moves by using its tail to continually turn its
body over and over, figure 1.12.b. The robot in figure 1.12.c has articulated joints
between body segments for a kind of inchworm-like motion and is similar to early
versions of the undulating serpent of figure 1.8.c. Finally, the robot in figure 1.12.d
is an example of a rolling chain of segments which is the method of locomotion most
commonly evolved for both oscillator and neural-network controlled genobots.

1.8 ADVANTAGES OF A GENERATIVE REPRESENTATION

The central claim of this chapter is that using generative representations improves
the evolvability of designs by capturing design dependencies and improving the abil-
ity of the search algorithm to navigate through large design spaces in a meaningful
way. This can be intuitively understood by looking at some examples of robots
evolved with a generative representation.
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(a) (b)

Figure 1.10. The two best neural-network controlled robots evolved with the non-
generative representation.

(a) (b)

Figure I.11. The two best neural-network controlled genobots evolved with the
generative representation.
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(a) (b)
(c) (d)

Figure I1.12. Other genobots evolved using the generative representation on runs
with no constraints on limb lengths.
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(b) ()

Figure 1.13. Mutations of a genobot: (a), the genobot from figure I.11.b; (b),
a change to a low-level component of parts results in all occurrences of this part
to have the change; (c), a single change to the genotype changes the number of
high-level components in the genobot from four to six.
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An advantage of the design encodings that are found with a generative repre-
sentation is in the changes that can be made to this encoding that can not be made
to designs encoded with a non-generative representation. The images in figure 1.13
are an example which shows the benefits of reuse through variations applied to the
genobot in figure I.11.b. Changing the genotype to add rods to an assembly of parts
results in the change to all occurrences of that part in the design, figure 1.13.b,
and a single change to the genotype can cause the addition/subtraction of a large
number of parts, figure 1.13.c. With a non-generative representation, these changes
would require the simultaneous changes of multiple symbols in the encoding. Some
of these changes must be done simultaneously for the resulting design to be viable
— changing the height of only one leg of a walking robot can result in a significant
loss of fitness — and so these changes are not evolvable with a non-generative repre-
sentation. Others, such as producing a new body-segment, are viable with a series
of single-rod changes. Yet, in the general case this could result in a significantly
slower search speed in comparison with a single change to a robot encoded with a
generative representation.

Non-Generative Representation (1 mutation) Generative Representation (1 mutation)

1000 ¢ k! 1000

100 100

change in fitness
change in fitness

10

. . . . .
1 10 100 1000 10000 1 100 1000 10000
command difference between assembly procedures command difference between assembly procedures

(a) (b)

Figure 1.14. Plot of amount of change in assembly procedures from parent to child
versus change in fitness for trials evolving robots.

The graphs in figure 1.14 are scatter plots of the command difference between a
parent and child’s assembly procedures against their change in fitness on the robot
design problem. These graphs show that as the size of change in the resulting design
increases it is more likely to be an improvement on designs encoded with a generative
representation than those encoded with a non-generative representation. This means
that search algorithms are better able to use large movements in the design space
to navigate through the design space with the generative representation.

That the evolutionary design system is taking advantage of the ability to make
coordinated changes with a generative representation is demonstrated by individuals
taken from different generations of the evolutionary process. The sequence of images
in figure 1.15, which are of the best individual in the population taken from different
generations, show two changes occurring. First, the rectangle that forms the body
of the genobot goes from two-by-two (figure I.15.a), to three-by-three (figure 1.15.b),
before settling on two-by-three (figures 1.15.c-d). These changes are possible with
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) Fitness: 348. ) Fitness: 780.
) Fitness: 1450. ) Fitness: 2192.

Figure 1.15. Evolution of a four-legged walking genobot.

a single change on a generative representation but cannot be done with a single
change on a non-generative representation. The second change is the evolution of
the genobot’s legs. That all four legs are the same in all four images strongly suggests
that the same module in the encoding is being used to create them. As with the
body, changing all four legs simultaneously can be done easily with the generative
representation by changing the one module that constructs them, but would require
simultaneously making the same change to all four occurrences of the leg assembly
procedure in the non-generative representation.

One other advantage of using a generative representation is that by encoding an
object through a set of reusable rules for constructing it, it is possible to encode a
class of designs. By evaluating an individual with different parameters to its starting
command families of designs can be evolved, such as the tables in figure 1.16 [5].

1.9 SUMMARY

Only in the last few years has the computer-automated design of robots succeeded in
transferring designs that are produced in simulation to the real-world [12]. The next
challenge has been in creating such systems that can produce designs of complexities
comparable to real-world robots. Existing systems for designing robots have been
limited by the representation they use to encode designs. As with both traditional
engineering and software design, for evolutionary design systems to be able to scale
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Figure 1.16. Two tables from a family of designs.

they must be able to hierarchically reuse modules throughout a design. For designs
to be able to reuse modules the representation scheme for encoding them must allow
it.

Here we have defined generative representations as the class of representations
which allow modules encoded in the genotype to be reused in producing the ac-
tual design and have claimed that evolution with generative representations will
improve scalability. To support this claim we described a generative representa-
tion and an automated design system for creating robots. Using this system we
evolved oscillator-controlled and neural-network controlled robots for a locomotion
task using both a non-generative and a generative representation. The results of this
comparison showed that better robots were evolved with the generative represen-
tation than with the non-generative representation, and that robots encoded with
the generative representation had a modular structure wth a reuse of assemblies of
components.

This comparison has shown how important the representation is for an evolu-
tionary design system to scale to complex, high-part count designs. The next step
in automated design is in producing design representations that can hierarchically
create and reuse assemblies of parts in ever more powerful ways. As continuing
work expands the range and power of generative representations, while maintaining
evolvability, we expect to see ever more progress toward general purpose evolution-
ary design systems.
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